7

The ROC curve is shown in FIG. 3 which shows the relationship between screen positive rate and detection rate using as markers free beta hCG alone+age (curve 5), PAPPA alone+age (curve 6) and a combination of these two markers+age (curve 7). From FIG. 3 it can be seen that when the combination of markers is used the detection rate is increased considerably over that using either marker individually.

Table 3 shows the actual detection rates at various screen positive rates for different combinations of serum markers.

TABLE 3

MARKERS USED	SCREEN POSITIVE RATE	DETECTION RATE
Maternal Age	5.0%	29.8%
Free B hCG + Maternal Age	5.0%	49.6%
PAPPA + Maternal Age	5.0%	45.8%
Free B hCG + PAPPA + Maternal Age	5.0%	77.3%

The results in Table 3 show that where free B hCG and PAPPA are combined as serum markers there are significant improvements in detection rates.

Î claim:

- 1. A method for antenatal screening for a chromosomal abnormality in a fetus, comprising:
 - A) calculating a pregnant patient's a priori risk of carrying a fetus having said chromosomal abnormality,
 - B) measuring said pregnant patient's blood in the first trimester for a concentration of free beta hCG, its precursors and metabolites, or a mixture thereof,
 - C) measuring said pregnant patient's blood in the first trimester for a concentration of pregnancy associated ³⁵ plasma protein A, its precursors and metabolites, or a mixture thereof,
 - D) calculating a normalized value for each of said concentrations from steps B) and C) by dividing said concentrations by a median value found in a population 40 of women with unaffected pregnancies and same gestational age as said pregnant patient,
 - E) calculating a first probability that the normalized values are part of a bivariate Gaussian distribution of values found in pregnancies with said chromosomal 45 abnormality.
 - F) calculating a second probability that the normalized values are a part of a bivariate Gaussian distribution of values found in unaffected pregnancies,

8

- G) calculating a likelihood ratio, said likelihood ratio being the ratio of said first probability and said second probability, and
- H) modifying the a priori risk by the likelihood ratio.
- 2. The method of claim 1 wherein the chromosomal abnormality is Down's Syndrome.
- 3. The method of claim 1 wherein the chromosomal abnormality is selected from the group consisting of: Edward's Syndrome, Pateaus Syndrome, Turner Syndrome, Monosomy X, Kleinefelter's Syndrome, and any combination thereof.
- 4. An apparatus comprising, a means adapted for receiving measurements of a pregnant woman's maternal blood concentration of concentration of free beta hCG, its precursors and metabolites, or a mixture thereof, and a computer programmed to carry out the following activities:
 - A) determining a pregnant patient's a priori risk of carrying a fetus having a chromosomal abnormality,
 - B) measuring said pregnant patients blood in the first trimester for a concentration of free beta hCG, its precursors and metabolites, or a mixture thereof,
 - C) measuring said pregnant patient's blood in the first trimester for a concentration of pregnancy associated plasma protein A, its precursors and metabolites, or a mixture thereof,
 - D) calculating a normalized value for each of said concentrations from steps B) and C) by dividing said concentrations by a median value found in a population of women with unaffected pregnancies and same gestational age as said pregnant patient,
 - E) calculating a first probability that the normalized values are part of a bivariate Gaussian distribution of values found in pregnancies with said chromosomal abnormality,
 - F) calculating a second probability that the normalized values are a part of a bivariate Gaussian distribution of values found in unaffected pregnancies,
 - G) calculating a likelihood ratio, said likelihood ratio being the ratio of said first probability and said second probability, and
 - H) modifying the a priori risk by the likelihood ratio.

* * * * *